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Abstract-Radiative transfer in an absorbing and isotropically scattering two-layer medium around an 
opaque cylinder is considered. Numerical solutions of the integral equations of radiative transfer arc 
obtained by the collocation method ; differential approximation solutions are obtained by the spherical 
harmonics method. For most of the casts considcrcd. reasonably accurate results can be obtained by 
using a four-term expansion for the integral equation method. The hemisphcrica-hemispherical and 
hemispherical -directional reflectivities of the medium exposed to dilfuse radiation are presented. The cR?cts 
of radius ratios. optical thicknesses and scattering albedos on the reflectivities are investigated. The outer 

layer of the medium has a great inRuencc on the rcflectivitics. 

1. INTRODUCTION 

RADIATIVE heat transfer in multi-layer systems is of 
considerable interest in many applications bccausc a 
large number of real objects under thermal radiation 
arc systems consisting of several layers of absorbing 
and scattering materials. The systems include, among 
others, composite layers for thermal insulation, multi- 
layer glass windows in a solar collector, atmospheres 
and laminated biotissues. Numerous methods for 
studying the problem have been reported. Iliasov and 
Krasnikov [I] used the two-flux method to study selec- 
tive absorption and scattering in multi-layer media. 
Devaux et cl/. [2] used the P-N method to solve the 
radiative transfer problem, based on the general 
anisotropically scattering model, in multi-layer atmo- 
spheres. The F-N method was also applied to obtain 
the transmissivity and reflectivity of an isotropically 
scattering two-layer slab with diffusely and specularly 
reflecting boundaries by Shouman and ozisik [3] and 
those of a multi-layer slab by Clements and ijzisik [4]. 
Radiative heat transfer in a two-layer slab was also 
solved by expanding the source function in the integral 
form of the equation of radiative transfer [5]. Stamnes 
and Conklin [6] applied the discrete ordinate method 
to radiative transfer in multi-layer atmospheres. 
Reflectivity of a two-layer slab with linear-anisotropic 
scattering has been obtained by the P-l I approxi- 
mation [7]. Moreover, the problems of radiative trans- 
fer through multi-layer coatings and glass windows 
have been studied extensively in the literature (e.g. see 
ref. [8] for a detailed bibliography). Recently, a few 
works considered multi-dimensional problems [9, IO] 
and the interaction of heat conduction and radiation 
in multi-layer media [I I, 121. The previous analyses 
studied almost every aspect of the problems. However, 
only brief attention [IO] was paid to the problems in 
cylindrical geometry. 

In contrast to most of the previous analysts, the 
present work considers radiative transfer in a two- 
layer medium around an opaque cylinder. The two 
layers considered may have different scattering and 
absorption coefficients. The problems of radiative 
transfer in a one-dimensional single-layer cylindrical 
medium have been studied cxtensivcly in the literature 
[l3-191. Examples of solution methods to radiation 
transfer in cylindrical geometry are the Monte Carlo 
method [13]. the variational method [l4], the diffcr- 
ential approximation [ 151. the source function expan- 
sion [l&18] and the discrete ordinate method [l9]. It 
has been shown that the results obtained by solving 
the exact integral equations of radiative transfer 
are highly accurate [5. 16-181. while the spherical 
harmonics method [7, 151 takes little computational 
time to generate reasonably good results for large 
scattering albedos or optical thicknesses. Thus, these 
two methods are adopted. In the present work, the 
integral equations of radiative transfer in a two-layer 
medium are derived and the method of collocation is 
utilized for solutions ; the solutions of the diffcrcntial 
approximation are obtained by the finite difference 
method. The results obtained by the two methods 
are compared. Comparisons of results by the present 
methods and those by the F-N method [4] and the 
P-l 1 approximation [7] for planar media are also 
made. The reflectivity. one of the most important 
apparent propertics, is presented and discussed for a 
wide range of parameters, including the radius ratio, 
the optical thickness and the scattering albedo. 

2. ANALYSIS 

The basic assumptions about the system in which 
the radiative transfer takes place are : (a) the medium 
is absorbing and isotropically scattering; (b) the 
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NOMENCLATURE 

CL, expansion coefficients for layer i in 
equation (18) 

D, radius ratio, r ,/r. 

D, rddlus rallo. ~‘>/,o 
I,(r. 0,4) radiation intensity for layer i 
I,,(r. 0.4) component of the intensity due to 

the attenuated incident intensity along 
the path of the beam 

I,,(r, U,4) component of the intensity due 
to the radiation scattered by the 
medium into the path of the beam 

I,.,,(r) functions defined by equation (20) 
I 0.1 incident intensity 

$(Y) 
number of expansion terms for layer i 
Bickley functions defined by 
equation (I 3) 

N order of the P-N approximations 
qt b-2) exit radiative flux at r = r: 
qL(l.4 component of c/T(r?), see 

equation (16a) 
q:m(rz) component of c/t (r?). see 

equation (16b) 
R hemispherical-hemispherical 

reflectivity 
R component of R, R, = q2fe(rz) 

R, component of R, R, = q:,,(r?) 

r,.l collocation points for layer i 
ro, r II r2 geometrical radii 
S,(r) source function for layer i 
s path along the beam 
s,,(r, r’. 4’) function defined by equation (10) 
s,* (r, r’, 4’) functions defined by equation ( I I ) 

si (r. r’. 0.4) functions defined by 
equation (6) 

s(r. r’. 4) function defined by equation (7) 
!’ variable utilized in equation (13). 

Greek symbols 
a integration variable utilized in 

equations (8) and (I 6) 
8‘ cxlinction coefficient for layer i 

; 
angle (see Fig. I (a)) 
polar angle 

r angle (see Fig. I (a)) 
Ps hemisphericaldirectional reflectivity 
Pet component of P,, due to the attenuated 

incident intensity along the path of 
the beam 

Porn component of P,, due to the radiation 
scattered by the medium into the 
path of the beam 

51 optical thickness of layer I, b ,(r , - r,,) 

T! optical thickness of layer 2, pz(r2 - r ,) 

4 azimuthal angle 
I(/(r, r’) functions defined by equation (9) 
(0, scattering albedo for layer i. 

Subscripts 
i 1 or 2, referring to layer I and layer 2, 

respectively 
k collocation points 
n order of I,,.(r) defined by 

equation (20). 

physical properties of the medium are constant; 
(c) the boundaries of the medium and the inter- 
face between the two layers are nonreflecting; (d) the 
outer boundary with radius r? is exposed to diffuse 
and cylindrically symmetric radiation and the inner 
boundary with radius r. is opaque ; (e) the geometrical 
dimension of the layers is much greater than one wave- 
length. The geometry and coordinates are shown in 
Fig. I (a). For cylindrical symmetry, the equations of 
radiative transfer are given as 

sine 
[ 

aI, sin 4 aI, 
cos4(ir - r- 

84 1 +/AI, = @,, i= 1,2. 

(1) 
Here, I, denotes the radiation intensity nondimension- 
alized by the incident radiation intensity, r the geo- 
metrical variable in the radial direction, 0 the polar 
angle, C$ the azimuthal angle, /Ii the extinction coeffi- 
cient for layer i, and Si the source function defined by 

i= I,2 (2) 

where w, is the scattering albedo. In the present work, 
the inner and outer layers are denoted by layers 1 and 
2, respectively. 

The boundary conditions for equation (I) can be 
written as 

1, (ro, O,d) = 1”. I I 

O<O<lt, -n/2 < c$ < a/2 W 

1dr2, O,$) = I,.,, 

0 < 0 < 7~, n/2 ,< C#I < 3~12 (3b) 

II(rlrQ,4) = Iz(r,,0,4), 

O<O<K, -42 < 4 Q n/2 (3c) 

II(rI.K4) = Idr,,&d), 

0 < e < 7L, 7712 < cp < 3742 (34 

where r, and r1 are the radii shown in Fig. l(b), and 
I,,, and I,,, are the incident intensities at r = r,, and 
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FIG. I. Geometry and coordinates (a) and partition of the 
integration domain (b). 

r = r2, respectively. In this work, the values of 1,. , and 
I,,, are considered as 0 and I/n, respectively. 

2.1. Integral equations of transfer 
Following the procedure described in refs. [8, 201, 

the formal solution of the intensity is found to be 

1, (r, 64) = 1,. , exp f-B ,si (r, ro, &4)1 
r; (1. ro, a. 6) 

+ 
I Sl Mr, s sin &4)1 exp t-B dB I ds, 0 

0 < 0 < n, 0 < cj < sin - ’ (TO/r) (44 

= zo.2exp{-B,s,+(r,r,,e,~)-82[sg+(r,r2,e,~) 

S, M, ssin 64)l 

xexp{-/3d(r,r,,e,4) 

-Bz[S--S(r,rI,B,~)l}B?ds, 

OGO<X. sin- ‘(rJr) < C#I < II (4b) 

1&,0,4) =I,,,exp{-B?sg(r,r,,e.~) 

-B I bi (r3 ro3 0,4) 

s 

.x;,r.r,.“.@, 
-~o(r,r,,~,~)l)+ SJx(r, s sin 0, c#J)] 

0 

xexp(-pzs)/??ds+ 
s 

S, [x(r, s sin e,4)] 
.T,(r.r,,o.m, 

xexp{-Bzso(r,rlre,4) 

-B,[s--so(r.r,,0,~)1)8, ds, 
0 < 0 < 7-c, 0 < d, < sin ’ (rJr) (54 

= ~o.zexp{-~zso(rrrlrel~)-B,[so+(rrrIre,~) 

-s,(r,rI.e,~)l-pz[sof(rrrZ.e,~) 

-s~(r.r,,Q.d)l) 

s 
I;W.T,.Il.@l 

+ S?[x(r,ssinB, r$)] exp (--B2s)B1ds 
0 

r;l’.‘,.U.Ol 
+ 

s 
,~; ,,,,,, o,r, Sl [x(r, s sin e,+)l 

xexp{-Pzsi(rrrlr&4) 
-B,[s--So(r,r,,e,~)l)p, ds 

r,q(r.r?.O.$l 
+ 

s 
Sz[.r(r,ssine,$)]exp{-~zs;(r,r,,e,~) 

.s;(r.r,.o.m) 

-P,[~g+(r,r,,~.~)-~~(r,r,,~,~)l 

-Bz[s--So+(r,r,.O,~)l}B?ds, 
O,<~<K, sin-‘(r,/r)<4,<sin-‘(r,/r) (5b) 

= IO.? exp I-P24 (r, r2, 8, $11 
r;(r.r>.n.O, 

+ 
s 

S,[x(r,s sin 0, &)I exp ( -/12s)B1 ds, 
0 

o<eGn, sin-‘(r,/r)<f#r<n (5c) 

where functions sf (r, r’, 0,r$) and x(r, r’, 4) are 
defined as 

s; (r, r’, e. f#~) = (rcos 4+-J(r” -rz sin’ 4)) cosece 
(6) 

x(r, r’, 4) = J(r*+r” -2rr’cos 4) (7) 

and s is the path along the beam. The intensity Ii@, 6, 4) 
can be split into two components, Zie(r, 8, 4), which 
equals the first term of the RHS (equations (4) and 
(5)) due to the attenuated incident intensity along the 
path of the beam, and I&-, 0, c#J), which includes the 
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rest of the terms of the RHS (equations (4) and (5)) 
due to the radiation scattered by the medium into the 
path of the beam. Substituting equations (4) and (5) 
into equation (2). the integral equations for the source 
functions are obtained as 

x K,,iB ,s,,(r, r’, @)I 
PI r’ da’ dr’ 
X(r rl c(T) 9 > 

s,(r’)K,,LB,s.(r,r’,~‘)l 
/I, r’ da’ dr’ 
x(r, r’, a’) 

+> 
” 

SI 

cos- ’ (,,,,,, +cm ‘lr,Jr.l 

S2(r’)K,,{BIs:(r,rlr~‘) 
‘I 1’= 0 

+Bz[.~:(r,r’,~‘)--s;t(r,rI,~‘)l} 
/lzr’ da’dr’ 
X(r r, a,) 

1 3 

s 

ccl- ’ , IID21 +m- ‘(r”irl 
fCr{Pd(rrr134’) I’ = 0 

r?da’ 
x 7 x-(r, r?, a ‘I 

(84 

S>(r) = T ” 
ss 

cos- ’ ,r,)/r, cm- ‘V(,Wl 
S, (r’) 

,,, ‘=O 

x K,,IP Isn(r, r’, $‘)I 
/I, r’ da’ dr’ 
s(r r, al) 

7 7 

+: 
r? CO) 

ss 

-‘,r,,r,+cos~‘(r,ii) 
S2(r’) 

r, d=,,r,r’, 

x K,,W2s,(r,r’, @)I 
bzr’ da’ dr’ 
X(r rl aT) 

, 3 

+: 
‘2 

II 

*cr. r’l 
S2(r’) , 1’ = II 

x 4, [B *St, (r, r’, +‘)I 

+Pz[s:(r,r’,~‘)--S:(r,rI,~‘)l} 
jzr’ da’ dr’ 
X(r r, a,) 

1 ? +> s cos-’ (D,,D~)+cor-‘lr,/rl 
KW2s,+(r, r2, +‘)I 

1’= 0 

x (r?--rcosa’) 
r,da’ 

x*(r, r2, a’) 

+3 s 
cm- ’ , IiD,, +cos- ‘(r&l 

K,{P2s;(r7rI,f) car-‘(D,/D*)+cor-‘(r,/r) - 

-s~(r,r,,~‘)]~(r?-rcosa’) 
r2 da’ 

x’(r, r2, a/j’ (8b) 

In equations (8a) and (8b) 

1 cos- ’ (r/r’), for r’ > r 
Il/(r, r’) = 

0, for r’ < r (9) 

s,(r, r’, 4’) = 

1 

s: (r, r’, @), for r’ < r, a’ > cos-’ (r’/r) or r’ > r 

s,- (r, r’, f$‘), for r’ < r, a’ < cos- ’ (r’/r) 

(10) 

SF (r, r’, 4’) = s$ (r, r’, 7c/2,4’) (11) 

sin’ [r’ sin a’!x(r, r’, a’)], 

qy = 

r 

for r’ > r, a’ > cos-’ (r/r’) or r’ < r 
n-sin’ [r’ sin a’/x(r, r’, a’)], (12) 

forr’ > r, a’ < cos-’ (r/r’). 

K,,(v) is the so-called Bickley function, defined as 

K”(Y) = s z ew ( -rt) 
I PJ(f’-I) 

dt, n= 1,2,... (13) 

and D, and D? are the radius ratios defined as 

Dl = rllro (144 
Dz = rz/ro. (14b) 

Similarly, the exit radiative flux at r = r> can be 
expressed as 

where 

ql(rJ = qL(r2)fqLh) (15) 

qL(rd = i s 
*car- ’ lD,!Dzl 

(r?-r? cosa’) 
.‘= 0 

I r2 da’ 
~K,,[B~s,+(r~~r~~4 )I(r2-r2cosa)X3(r2,r2,a,) 

+f 
s 

?COS-‘(llD~l 
x 2cos-,(D,,D,j (r2-rzcosa’)K,,{P2s;(r2,r,,~‘) 

r, da’ 
x x’(r2,r~,a’) (164 

932) = 4 
cos-‘(,,Dl,+car-‘(rJr’) 

(r z - r’ cos a’)S , (r’) 

B, r’ da’ dr’ 
x K,~[PIS,(r,,r’r~‘)lxZ(r2 rl a,) 

2 , 

-‘lD,iDll+cor-‘lr,/r’) 

(rz-r’cosa’)S2(r’) 
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‘? co5 ss -1, I,D:,+c”r-‘,r,4r’, 
+4 (r2-r’c~sa’)S~(r’) 

,, “T ~‘(D,rD!,+cor-‘lr,,r.) 

~K,:~P~s,-(r?,r~,~‘)+S,[S:(rz.r~,~’) 

-s;(r2,r,, ~‘)l+B?[s:(rz,r’,~‘)--S:(r?,rI.~’)l) 

(16b) 

Moreover, the hemispherical-hemispherical reflectiv- 
ity is defined by 

R = R,+R, (17) 

where R, represents the contribution of the attenuated 
incident radiation, i.e. qTC(r2), and R, represents the 
contribution of the scattered radiation by the medium, 
i.e. q~,,(rz). After solving equations (8a) and (8b), the 
radiative intensity can be obtained by substitut- 
ing S,(r) and S?(r) into equations (4) and (5). The 
hemispherical-directional reflectivity, pa, is equal 
to Iz(rz. 0, 4). where 0 < 0 < n. -n/2 < b, < n/2. 
Similar to the intensity, p0 can be separated as pRc = 
Iz,(rz, 0, 4) and pII,,, = 12,,dr2, 0, 4). 

2.2. Application of the collocation method to the 
intqqral equations 

To solve the simultaneous integral equations for 
S,(r) and S.,(r), the collocation method is used. Here, 
we represent S,(r) and S>(r) in terms of the Lagrange 
polynomials as 

J, ‘1 
S,(r) = C C,,, n (r-rI.k)l(rI.,-rI.~)r 

,= I k=! 
k#J 

rO < r < r, (W 

and 

‘2 
s?(r) = 1 c?,, kf( (r-r2.kM-2., -rd 

I= I , 
k#J 

r, <r<rz (18b) 

where C,,j and Cl., denote unknown expansion co- 
efficients, r ,,% and rI,p denote collocation points, and 
lT is the product symbol. Substituting equations (18a) 
and (18b) into equations (8a) and (8b) and forcing 
the RHS = LHS at a set of collocation points yields 
a system of (J, +J?) algebraic equations for an equal 
number of unknown expansion coefficients, provided 
that all integrations in equations (8a) and (8b) can 
be finished. Since some of the integrations are over 
domains with singularities, the partition-extrapol- 
ation technique [18, 211 is adopted to overcome the 
difficulty. The technique is illustrated in the Appendix. 
For the accuracy of the numerical results, the zeros of 
the Chebyshev polynomials [22] are chosen as the 
collocation points. 

Once these expansion coefficients are determined, 
the hemispherical-hemispherical reflectivity can be 
obtained by substituting equations (I 8a) and (I 8b) 
into equations (I 5) and (I 7) while the hemispherical- 
directional reflectivity can be obtained by substituting 
equations (I 8a) and (I 8b) into the formal solution of 
the intensity and the definition of pe. 

2.3. P-N approsinzations 
The spherical harmonics method [8, 151 is also used 

to solve the present problem. The P-l 1 approximation 
to the present problem is the following : 

d1t.o 193618 -= 
dr 3465r It.0 -78/U, , - E It.2 I 

+975lU,,, + 
12878 
~ In.4 -~w,~L, I 

495014 
- --,A+ 15r 

- 83WU,.~ - - 3, 4E9901,,,o+ y$ ,,,, (19a) 

dl,, , I 
7 = (w - 1 W,.” - ; 1,. I (19b) 

(19c) 

dlt.3 1 - = jw,B,l,.“+ 5 dr 5r ,.,-/A~,.?- ;I,,, (194 

dlt.4 ---E 
dr 

dIa.6 -= 
dr 

dlt.7 1 32 
dr - 7 ~,S,~,.a - ~ IOOlr”.’ 

dlt, 8 -= 
dr 

(19i) 

dl,, 1 128 I _ 896 
A = gw,/?,r,.a - ~ 
dr 7293r ‘,’ 21 879r”.’ 

(19j) 
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dl,,,o 1792 -=-- 
dr 230 945r I’,’ - 

- g$,+ ~I,,4,,- lroI,,, (19W 
dl,,,, 1 

fi dvt.o - 
512 3200 

- = 
dr 

-II,,---- 
46 189r 138 567r ‘I.’ 

192 
--I#,- 

4199r gr,,,+ ~ri.-hl- % I, r 

i= I,2 

where I,,,,(r) is defined as 

(191) 

li 
I,..(r) = 

SI 

Zn 
I,(r, 0, C#J) (sin Bcos 4)” sin Bd4 d0. 

,,=o &s=o 
(20) 

The boundary conditions for equation (19) are 
obtained by applying the Marshak approach [8, 231. 

Equation (19) with Marshak’s boundary con- 
ditions, can be adapted to linear two-point boundary- 
value problems. They are solved by the finite differ- 
ence method. For the largest optical thickness con- 
sidered (r, = TV = 5), a uniform grid of 50 divisions 
is used. Solutions of a lower-order P-Napproximation 
may be obtained by a similar process. 

Obtaining I,..(r), the hemispherical-hemispherical 
reflectivity considered in the P-N approximations can 
be determined from the expression 

R = I +12,,(rz). (21) 

3. RESULTS AND DISCUSSION 

The hemispherical-hemispherical reflectivity for 
various scattering albedos is presented in Table l(a) 
for D, = 1.1, Dl = 1.2 and T, = r? = 0.1, Table l(b) 
for D, = 2, Dz = 3 and 7, = r? = I, and Table I(c) 
for D, = 6, Dz = 1 I and 7, = 7* = 5. Here, the op- 
tical thicknesses 7, and ‘s2 are defined by P,(r, -ro) 
and Pz(rz - r ,), respectively. Numerical results are 
obtained by the collocation method to the exact inte- 
gral equations and the P-N approximations. As shown 
in Tables I(aHc), the convergence of the solutions 
appears as J, = J, and N increase. Since the results 
for the present problem seem to be unavailable in the 
literature, comparisons between the results obtained 
by the two methods are made to examine the cor- 
rectness of the present analysis. The comparisons 
show that the agreement between the higher order 
results of the integral equation method and those of 
the P-N approximations is excellent, except the results 
for small scattering albedos or small optical thick- 
nesses. 

Moreover, Tables I(aHc) show that the convergent 
rate of the polynomial expansions of the source func- 
tion in the integral equation method is rapid for opti- 
cally thin cases. The discrepancy between the results 
of the four-term expansion and those of higher order 
expansions is quite small for a wide range of optical 

thicknesses and scattering albedos. With a view to 
engineering applications, it is sufficient to use the 
four-term expansion (J, = Jz = 4). The CPU time 
required to solve the integral equations depends on 
the number of expansion terms. Typical run times are 
about 3.3 min for the cases with J, = Jz = 4 and about 
102.5 min for the cases with J, = J? = 20 on an AT 
486-33 personal computer. 

Similar to the one-layer cylindrical problem [ 151 
and the multi-layer planar problem [7], the P-N 
approximations of low order generate accurate 
enough results only for the cases with large scattering 
albedos and large optical thicknesses, as shown in 
Tables 1 (a)-(c). Because the curvature effects make the 
angular distribution of the intensity more anisotropic 
for cylindrical geometries, the results of the P-N 
approximations for two-layer cylindrical media are 
not so accurate as those for two-layer planar media 
presented in ref. [7]. For the same reason, when the 
optical thickness 7, +7* = 2~~ is fixed, the P-N 
approximations generate better results for the cases 
with smaller radius ratios. Besides, the CPU time 
required to solve the P-N approximations depends on 
the scattering albedo, the optical thickness and the 
order of approximation. Typical run times are about 
7 s for the cases with w, = wz = 0.2 and 7, = 72 = 1 
by the P-3 approximation and about 10 min for the 
cases with UJ, = o2 = 0.995 and 7, = ‘s2 = 5 by the 
P-l 1 approximation. 

Next, to show the effects of various parameters, 
Tables 24, obtained by the IO-term expansion of the 
source function (J, = Jz = IO), and Table 5, obtained 
by the P-l I approximation, are presented. Graphic 
results are also presented. 

Each of Tables I(aHc) and 2 reveals that the hemi- 
spherical-hemispherical reflectivity R increases with 
increasing w, for fixed wI and optical thicknesses. A 
similar tendency can be observed by increasing w2 for 
fixed o, and optical thicknesses. An examination of 
Tables I(a)+c) reveals that the increase of R as w2 
varies from 0.2 to 0.995 for fixed w , is larger than the 
increase of R as w , varies from 0.2 to 0.995 for fixed 
w2. That is, the outer layer has a strong influence on 
R. This tendency is consistent with the definition of 
R, equation (17). Moreover, when the optical thick- 
ness of the outer layer is large, the influence of the 
inner layer on R is quite minor, as shown in Table 
l(c). 

Table 2 shows the effects of various combinations 
of r, and P? on the hemispherical-hemispherical 
reflectivity R of a medium with a fixed optical thick- 
ness 7, +7, for various scattering albedos. We find 
that for the cases with small III?, the reflectivity R 
increases with the decrease of 7*. However, for the 
cases in which w2 is very large (wz = 0.995) and far 
larger than o ,, the reflectivity R decreases with 7 2 ; for 
the cases in which wz is large but not larger than w ,, 
the reflectivity R increases with the decrease of ‘s2. 

Before considering the reflectivity R further, it is 
worth considering the two constituents, R, due to 
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Table I. Hemispherical-hemispherical reflectivity obtained by theintegralequation method and the 
P-N approximations for D, = 1.1, D2 = I.2 and r, = T? =O.l (a). for D, = 2. D, = 3 and 

T, = T? = I (b).and for D, = 6.D? = II and r, = rz = 5(c) 

II53 

(a) Integral equation method (J, = J?) P-Napproximations 

UJ I ‘U 2 J, = I J, =2 J, =4 J, = 6 P-l P-3 P-II 

0.2 0.2 0.09241 0.09279 0.09275 0.09275 0.05973 0.07515 0.08967 
0.8 0.2 0.13249 0.13249 0.13262 0.13263 0.10117 0.11690 0.12946 
0.995 0.2 0.14751 0.14716 0.14741 0.14743 0.11569 0.13174 0.14393 

0.2 0.8 0.16323 0.16399 0.16400 0.16399 0.11997 0.14278 0.16463 
0.8 0.8 0.21041 0.21102 0.21114 0.21114 0.16714 0.19193 0.21194 
0.995 0.8 0.22819 0.22X49 0.22873 0.22874 0.18373 0.20949 0.22925 

0.2 0.995 0.19001 0.19055 0.19067 0.19067 0.14119 0.16732 0.19246 
0.8 0.995 0.24003 0.2404X 0.24070 0.34071 0.19048 0.21930 0.24275 
0.995 0.995 0.25892 0.25908 0.25942 0.25943 0.20784 0.23792 0.26119 

(b) Integral equation method (J, = J?) P-N approximations 

0, , UJ? J, = 2 J, =4 J, = 8 J, = IO P-l P-3 P-II 

0.2 0.2 0.07996 0.07931 0.07915 0.07914 0.0447X 0.06221 0.06760 
0.8 0.2 0.09613 0.09542 0.09528 0.09527 0.05857 0.07778 0.08435 
0.995 0.2 0.10701 0.10694 0.10682 0.10682 0.06676 0.08830 0.09628 

0.2 0.8 0.38090 0.37893 0.37862 0.37861 0.35814 0.36970 0.37183 
0.8 0.8 0.43786 0.43380 0.43345 0.43344 0.41958 0.42619 0.42832 
0.995 0.8 0.48060 0.47717 0.47688 0.47686 0.46109 0.46X65 0.47286 

0.2 0.995 0.58267 0.58897 0.58895 0.58894 0.55590 0.58063 0.58369 
0.8 0.995 0.69000 0.6946' 0.69457 0.69457 0.67482 0.69066 0.69178 
0.995 0.995 0.77769 0.78545 0.78553 0.78553 0.76275 0.78088 0.78443 

Cc) Integral equation method (J, = J,) P-Napproximations 

OJ I W? J, = 2 J, =4 J, = IO J, = 20 P-l P-3 P-II 

0.2 0.2 0.03095 0.05093 0.05058 0.05048 0.03670 0.04633 
0.8 0.2 0.03095 0.05093 0.05058 0.05048 

: 
0.03670 0.04633 

0.995 0.2 0.03095 0.05093 0.05058 0.05049 t 0.03670 0.04633 

0.2 0.8 0.30329 0.36728 0.36407 0.36384 0.34659 0.35957 0.36217 
0.8 0.8 0.3035X 0.36751 0.36426 0.36402 0.34673 0.35977 0.36235 
0.995 0.8 0.30428 0.36798 0.36466 0.36443 0.34699 0.36018 0.36276 

0.2 0.995 0.80470 0.81825 0.81817 0.81811 0.81382 0.81725 0.81772 
0.8 0.995 0.82041 0.83471 0.83434 0.83427 0.83188 0.83377 0.83396 
0.995 0.995 0.89109 0.89696 0.89715 0.89707 0.89532 0.89664 0.89692 

tThe datum is negative. 

the attenuated incident intensity and R, due to the 
radiation scattered by the media. 

From the definition R, = q:c(rz) and equation 
(16a), we find that R, is independent of the scattering 
albedos. The dependence of R, on D ,, Dz, T , and T? 
is shown in Tables 3(a) and (b). The R, will approach 
zero as D, and Dz become close to unity, as shown in 
Tables 3(a) and (b). It is also found that R, increases 
with cos-‘(l/D?) and cos~‘(D,/D~). Table 3(a) 
shows that R, decreases with the increase of 7, +rz 

for the situations where D, and Dl are fixed and 
T, = r?. Table 3(b) reveals that the thinner the T?, the 
larger the R, for the situations where r , + 7? is fixed. 

The variation of R, with various parameters can 
be found from Table 4. Because the radiation 
obstructed by the inner opaque cylinder increases with 
the decrease of D , and D 2, R, decreases as D , and D I 
decrease. The combined effects of D ,, D? and T, fr, 

on R, are also investigated. Because of the mixed 
influence of the obstruction of radiation and optical 
thicknesses, the R, of the media with w, = CO? and 
fixed D, and Dz increases, reaches a maximum, and 
then decreases with the increase of T, +rz = 2~:. 

especially for the cases with large D, and Dz. Besides, 
the optical thickness r,+s? = 2rl, at which the 
maximum of R, appears, increases with the increase 
of w, = w?. The tendency is different from that for 
radiative transfer in planar composites, in which 
R, = R increases with optical thicknesses mon- 
otonously. For two-layer cylindrical media with 
CO, # w2 and fixed D, and D?, the variation of R, with 
respect to r,+r2 = 2~~ is similar to what happens in 
media with w, = w?. However, the optical thickness 
at which the maximum of R, appears for the cases 
with small w , and large CO? is larger than that for the 
cases with large w , and small CO?, as shown in Fig. 2. 



1154 C.-Y. Wb and S.-C. wu 

Table 2. Hemispherical-hemispherical reflectivity of a medium with D, = 2, D, = 3 and 
r,+r, = 2 

Optical thickness combination 

0, , u, 2 

0.2 0.2 
0.5 0.2 
0.8 0.2 
0.995 0.2 

0.2 0.5 
0.5 0.5 
0.8 0.5 
0.99s 0.5 

0.2 0.8 
0.5 0.8 
0.8 0.8 
0.995 0.8 

0.2 0.995 
0.5 0.995 
0.8 0.995 
0.995 0.995 

T, = 0.4 T, = 0.8 T, = I T, = I.2 T, = 1.6 
T? = I.6 T2 = I.2 T?= I T? = 0.8 T? = 0.4 

0.06239 
0.06350 
0.06498 
0.06623 

0.07115 0.07914 
0.07476 0.08516 
0.08046 0.09527 
0.08644 0.10682 

0.18490 0.19236 
0.19133 0.20226 
0.20173 0.21923 
0.21291 0.23917 

0.38044 0.37861 
0.39520 0.39842 
0.42003 0.43344 
0.44828 0.47686 

0.61949 0.58894 
0.65194 0.62605 
0.70963 0.69457 
0.78038 0.78553 

0.09195 
0.10189 
0.11935 
0.14088 

0.15225 
0.17948 
0.22984 
0.30008 

0.17565 
0.17799 
0.18116 
0.18391 

0.20319 0.24650 
0.21824 0.28085 
0.24514 0.34508 
0.27923 0.43632 

0.38334 
0.39059 
0.40081 
0.41007 

0.37640 0.37133 
0.40256 0.41671 
0.45077 o.som 
0.51478 0.62863 

0.67825 
0.70148 
0.73639 
0.77038 

0.55592 0.47711 
0.59810 0.53328 
0.67852 0.64150 
0.79141 0.80332 

The combined effects of radius ratios, optical thick- 
nesses and scattering albedos on R may be found by 
comparing R, in Table 3(a) and R, in Table 4. The 
comparison shows that R, may be larger than R, for 
the casts with small albedos ((II, = (ul = 0.2). large 
D, and DJ and small optical thicknesses. Since RJR 
may be larger than RJR for the cases with small 
scattering albedos and R, is determined by D ,, Dz, T, 

and T:, the effects of D,. D2, and T,+T, = 2~~ on 
R = R,+ R, are significant for cases with small 
scattering albedos. 

In the current model, the behaviour of radiative 
transfer in a two-layer cylindrical medium where the 

radius ratios are very close to unity is similar to that 
in a planar medium with the same optical thickness. 
Thus. for comparison purposes the exact results for 
planar media [4] are also shown in Table 4. As seen 
from the table, when the radius ratios approach unity. 
R,, of a cylindrical medium approaches R of a planar 
medium with the same optical thickness. 

In the limit that the radii become extremely large, 
the cylindrical system will approximate a planar 
system. Table 5 shows the limiting process for R 
obtained by the P-l I approximation. Comparisons of 
the present results for very large radii and those from 
ref. [7] for planar systems show good agreement. 

Table 3. R, of a medium with r, = TV and decreasing radius ratios (a), and R, of a 
medium with r,+lz = 2 and decreasing radius ratios (b) 

(a) Optical thickness r,+r, 

D, D2 0.1 0.5 2 5 

6 II 0.73835 0.34730 0.04376 0.00635 
2 3 0.51741 0.21104 0.02232 0.00337 
1.5 2 0.37048 0.13153 0.01219 0.00189 
1.1 1.2 0.09788 0.01907 0.00131 0.00021 
1.05 I.1 0.04457 0.00604 0.00039 0.00006 
I.01 1.02 0.00474 0.00029 0.00002 
1.005 I.01 0.00151 0.00007 
I.001 1.002 0.00007 

(b) Optical thickness combination 

D, 

6 
2 
I.5 
I.1 
1.05 
1.01 

T, = 0.4 5, = 0.8 T, = 1.2 

D, T? = 1.6 Tz = 1.2 TV = 0.8 

II 0.01902 0.03184 0.06303 
3 0.0093s 0.01590 0.03321 
2 0.00494 0.00857 0.01856 
1.2 0.00051 0.00091 0.00204 
I.1 0.00015 0.00027 0.00061 
1.02 0.0000 I 0.00001 0.00003 

T, = 1.6 
TJ = 0.4 

0.15290 
0.09020 
0.05525 
0.00765 
0.00238 
0.00011 
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Table4. R, ofa medium with T, = rz and decreasing radius ratios 
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0, , 

0.2 

0.8 

0.2 

0.8 

(Or D, 

0.2 

0.2 

0.8 

0.8 

6 
2 
1.5 
I.1 
1.05 
I.01 
1.005 
I.001 

6 
2 
I.5 
I.1 
1.05 
I.01 
1.005 
I.001 

6 
2 
1.5 
I.1 
1.05 
I.01 
1.005 
I.001 

6 
2 
I.5 
I.1 
1.05 
I.01 
1.005 
I.001 

Optical thickness r,+r, (5, = T?) 

DZ 0.1 0.5 2 5 

II 
3 
2 
I.2 
I.1 
1.02 
I.01 
1.002 

II 
3 
2 
I.2 
I.1 
I.02 
I.01 
1.002 

II 
3 
2 
I.2 
I.1 
I .02 
I.01 
1.002 

II 
3 
2 
I.2 
I.1 
1.02 
I.01 
1.003 

0.03107 
0.02848 
0.02646 
0.02079 
0.01876 
0.01590 
0.01532 
0.01477 
0.01462t 

0.05670 
0.05614 
0.05478 
0.04738 
0.04377 
0.03804 
0.03676 
0.03546 
0.03521t 

0.10575 
0.09297 
0.08396 
0.06214 
0.05520 
0.04614 
0.04440 
0.04279 
0.04230t 

0.13385 
0.12319 
0.11488 
0.09123 
0.08264 
0.07054 
0.06805 
0.06563 
0.06498t 

0.07397 
0.06447 
0.05806 
0.04453 
0.04121 
0.03801 
0.03759 

0.06199 
0.05682 
0.05380 
0.04849 
0.04738 
0.04633 

0.05179 
0.05025 
0.04922 
0.04725 
0.04681 

0.03715t 

0.13449 
0.12414 
0.11552 
0.09253 
0.08591 
0.07915 
0.07819 

0.04607t 

0.08057 
0.07295 
0.06867 
0.06138 
0.05989 
0.05848 

0.04626t 

0.05231 
0.05072 
0.04967 
0.04767 
0.04723 

0.07727t 

0.30953 
0.26308 
0.23368 
0.17627 
0.16303 
0.15053 
0.14882 

0.05816-I 

0.39178 
0.35629 
0.33632 
0.30221 
0.29516 
0.28804 

0.04668t 

0.37884 
0.36638 
0.35838 
0.34324 
0.33974 

0.14723t 

0.39939 
0.35021 
0.31708 
0.24583 
0.22791 
0.21034 
0.20786 

0.28698t 

0.45653 
0.41112 
0.38659 
0.34580 
0.33752 
0.32910 

0.33591t 

0.38614 
0.37297 
0.36469 
0.34916 
0.34559 

0.20560t 0.32795t 0.341687 

tThe datum is the R obtained by the P-N method [4] for a planar medium with the same optical 
thickness. 

Besides, when r?--l , = r,--r,, and 5, = T? are fixed, 
the limit where the radii become large corresponds to 
the limit where the radius ratios approach unity. as 
shown in Table 5. Thus, as seen from Table 5, the 
limiting process of radius ratios to unity has the same 
effects as the increase of radii. 

The hemispherical-directional reflectivity pu of a 
cylindrical medium is different from that of a planar 
medium, because the latter depends only on the polar 
angle. Thus, it is of interest to investigate the angular 
dependence of p,, and the influence of various par- 
ameters on pu. Besides, since the attenuated incident 
radiative intensity plays an important role in the 
present problem, pee is also presented. In Figs. 3(a)+d), 
the variation of p. and pne with respect to 9 are shown 
on the view planes with < = 0, x/4 and 42, where each 
view plane, such as Q VP in Fig. 1 (a), is defined by the 
r-axis and a line normal to the r-axis, u is the angle 
between the r-axis and the leaving intensity I@?, 0, q5), 

and 5 is the angle between the plane r Vz and a 
view plane, such as QVP in Fig. I(a). The relation 
between (<, q) and (0, Cp) is tan q = I/(cos 5 tan 0 cos 4). 
The view plane with ?j = 0 is a special one, where 
the attenuated incident radiation does not have direct 
influence on po, and, thus, P,,~ = 0. Moreover, when 
‘1 < q., = tan - ’ [I/(cos 5 tan 0 cos 4)] with C#I = sin - ’ 
(l/D?), the attenuated incident radiation is obstructed 
by the inner opaque cylinder. Thus, on each view 
plane, pfle = 0 as q < r15, p0 has a sudden variation at 
q,, and both pn and pnc increase with the increase of rl, 
as shown in Figs. 3(a)-(d). On the view plane with 
?j f 0, once q reaches n/2, pn = put = I/a. When 
q > rls, the increase of pot with 5 is due to the decrease 
of the optical path and the increase of p,, with 5 is due 
to the Increase of put. 

Figures 3(a)-(d) also show the effects of III, and w? 
on p. and pee. Similar to R,, the scattering albedos do 
not have any influence on pee. Besides, when w2 
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Table 5. Hemispherical-hemispherical reflectivity of cylindrical systems with increasing 
radii and fixed optical thicknesses 

Optical thickness T, = rz 

01 w2 rot r,t r2t D, D? I 5 

0.2 0.2 I 2 3 2 3 0.06760 0.04562 
2 3 4 I.5 2 0.05702 0.04523 

IO II I2 I.1 I.2 0.04588 0.04464 
20 21 22 1.05 I.1 0.04494 0.04453 

100 I01 102 I.01 1.02 0.04434 0.04443 
0.04421$ 0.04440$ 

0.8 0.2 1 2 3 2 3 0.08435 0.04562 
2 3 4 I.5 2 0.07225 0.04523 

IO II I2 I.1 1.2 0.05884 0.04464 
20 21 22 I .05 I.1 0.05749 0.04453 

100 IO1 I02 1.01 I .02 0.05652 0.04443 
0.056291 0.04440$ 

0.2 0.8 I 2 3 2 3 0.37183 0.3561 I 
2 3 4 I.5 2 0.34353 0.35216 

IO II 12 I.1 1.2 0.30163 0.34474 
20 21 22 1.05 I.1 0.2943 I 0.343 I3 

100 IO1 102 I.01 I .02 0.28802 0.34164 
0.28638$ 0.34123: 

0.8 0.8 I 2 3 2 3 0.42832 0.35629 
2 3 4 I.5 2 0.39487 0.35234 

IO II I2 I.1 1.2 0.34553 0.34491 
20 21 22 I .05 I.1 0.33688 0.34330 

100 IO1 102 I.01 I .02 0.32941 0.34180 
0.327461 0.34140f 

t The unit of r,,. r, and r2 is length, such as metre. 
j, The datum is the R obtained by the P-l I approximation [7] for a planar medium 

with the same optical thickness. 

becomes smaller, the influence of the inner opaque 
cylinder on ps becomes less significant. Comparing 
the four cases shown in Figs. 3(a)-(d), one can find 
that the influence of w, on ps is less than that of 
w2 on pu. 

4. CONCLUSIONS 

Some conclusions are summarized below for the 
present analysis : (a) numerical solutions of the exact 
integral equations by the collocation method are 
accurate under various conditions, while the low- 
order P-N approximations work well only for the 
cases with large scattering albedos and large optical 
thicknesses. (b) The influence of the outer layer on 
the reflectivities is stronger than that of the inner layer. 
(c) When T, +7, is fixed, for cases with small w2, the 
reflectivities increase with the decrease of 7?, while 
when w2 is very large (02 = 0.995) and far larger than 
o,, the reflectivities decrease with t2. (d) Owing to the 
attenuated incident radiation and the obstruction of 
radiation by the inner opaque cylinder, the depen- 
dence of the hemispherical-hemispherical reflectivity 
on radius ratios and optical thicknesses is complicated 
and the hemisphericalLdirectiona1 reflectivity has 
complicated angular dependence. 

In this work, because of the limits of space and 
resources, the effects of the reflections at the bound- 

aries have not been investigated. However, it is worth- 
while extending this work to the cases with Fresnel 
boundaries or diffusely reflecting boundaries, because 
the cases have particular physical significance in fibre 
optics and in the area of determination of thermal 
properties by the transient hot wire method. 

1.0 I 1 I ’ , 1 I 

WI = t@ = 0.9% - 

--- wI = 0.2, y 0.8 = 
---- wI = 0.8,~ = 0.2- 

% -------- w,=w=o.2 

----__ 

71 + St 

FIG. 2. R, vs optical thickness, T, +r,, for a medium with 
D, = 2, D2 = 3 and 51 = T:. 
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(4 
FIG. 3. Reflectivities, p0 (-) and pO. (----), for a medium with D, = 2, O2 = 3 and r, = rz = l : 

WI = 0: = 0.2 (a), wi = o2 = 0.8 (b), w, = 0.8, w2 = 0.2 (c), and w, = 0.2, W? = 0.8 (d). 
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APPENDIX 

To illustrate the application of the partition-extrapolation 
technique [18, 211. the second term on the RHS (equation 
(Xb)) having a singularity at r’ = r and r’ = 0 is considered. 
As an example, we set the singular point to be A and consider 
only the integration over the domain ABHFE as shown in 
Fig. I(b). because of the symmetry to AO. To finish the 
integration over thedomain with thesingularity, we partition 
the domain into two subdomains : one is close to the singu- 
larity. ABCD, and the other is far away from the singularity. 
BHFEDC. The subdomain ABCD close to the singularity 
is partitioned into many subregions without singularities. 
Gaussian quadrature is applied to the integration over the 
subdomain BHFEDC and each subregion of the subdomain 
ABCD. Then, we apply an extrapolation method to the 
partial sums of the integrations over the subregions of ABCD 
repeatedly. Finally, the limit of the process yields the result 
for the integration over the domain with singularity. The 
details are similar to those reported in ref. [ 181. 


